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Dehai Bao and Zhong-yuan Zhut

CCAST (World Laboratory), PO Box 8730, Beijing 100080, People’s Republic of China,
and Institute of Theoretical Physics, Academia Sinica, PO Box 2735, Beijing 100080,
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Abstract. The operator ordering problem is investigated in the framework of geometrical
quantization in the Schridinger coordinate representation. It is shown that, for quantization
of polarization-preserving classical observables pf'{g}, correct Hermitian quantum operators
are derived; for quantization of polarization-unpreserving classical observables p?f(g), the
BKS kernel method actually defines an ordering rule which is not Wey!'s rule, but is the
GCT-invariant rule proposed by DeWitt.

The problem of operator ordering ambiguity in quantum mechanics is a long-standing
one and has been examined by many authors both in the canonical quantization
formalism and the Feynman path integral quantization formalism (see [1] for a survey
of work prior to 1959, also [2-15]). It has been proved that the ordering ambiguity
exists in both procedures. In order to get an unique quantum system corresponding
to a given classical one, we have to choose some ordering rule (or equivalently, some
definition of discrete form for action in the path integral formalism). Different ordering
rules usually lead to non-equivalent quantum operators. It is not known which one
should be adopted, as each of them has certain advantages, but none of them is
completely satisfactory {1, 14-15].

Geometrical quantization is a comparatively new method of quantization developed
in 1970s {16-20]. In geometrical quantization formalism, there exists a well-defined
operation on states in Hilbert space corresponding to a classical observable and as a
result, geometrical quantization must be free from the problem of ambiguity. [n other
words, a certain ordering rule must have been defined by the formalism itself. It is of
the interest to see what this rule is like.

As the ordering problem is what we address this paper, it is convenient to work in
one dimensional situations. The configuration space is Q = {4} and the classical phase
space is M = T* Q. Therefore, the symplectic structure is simply @ =dp » dg and the
symplectic potential 6 = p dg.

In order to express our results in familiar forms of usual quantum mechanics, we
will discuss them in the Schrodinger coordinate representation. In other words, the
polarization structure needed is chosen to be F spanned by X =d/dp. (Since M is
contractible, all the additional structure needed for quantization exists [19].)

Under the chosen polarization F, Hilbert space consists of polarized sections of
L®V A F with forms as s = (q)s5,® v, where ¢(g) is smooth complex-valued function
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over R, 5, is the unit section of prequantum bundle L=M® C and v is the section
of the half-form bundie for F.

For any classical observable, geometrical quantization gives a well-defined operation
on states of Hilbert space.

1. Let us first consider the quantization of classical observables which preserve the
polarization F. These kinds of quantities can be generally expressed as follows:

A VY

g{p, q)=pf(q)+ V{q).

-
—
—

The induced Hamiltonian vector field is,
X, =f (@)=~ pf () + V@) = 2
£ q aq or\q q ap. {2)
Therefore,

AN
[%e3]=r . )

As a result, the operation on states of Hilbert space induced from g is as follows
[19-20]:

O(g)[¥s,® V]:[(_iﬁvx,'*'g)‘%ﬁf'(Q)](lffSo@V) 4

where Vx = X, —(i/ #)8(X,).
Substituting (2) into (4) directly gives,

. a ih
O(g)[¢so®@v] = [—1ﬁf(q)g&'+ Vi) -5 f (q)](wse® v). (5)
In the usual language of quantum mechanics, the above result means,

ih
O(pf(q) + V(@) = —ihf () %-%f’(q) +V(g)

~1(QP-51(Q)+V(Q) ©

where P=O{p)=-i#(3/3q), Q=0(g)=4.

Obviously, result (6) is just the correct operator of pf(q)+ V(g), which is unique
when Hermiticity is required [15].

2. Now let us consider the quantization of classical quantities g(p, g) =p’f(q)
which do not preserve polarization F. The Hamiltonian vector field induced from g is
as follows:

Xg=2pf(q)£—p2f'(q)5%- )

According to the Bks method, the operators of classical quantities which do not
preserve polarization are given by the following formula [19-20]:

O(8)[ss® ¥ =ih = (5@ V) -0 ®)
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where ,(q} is defined by:
(p,(q):(ih)“”J. dp- exp[ J (6X,)—gled;* ds]
x [det o(X,, ¢:X,)]"%- ¢(&:q) (9)

and ¢; is the canonical transformation induced by g.
Straightforward calculation with the aid of (7) gives

_[ [6(X;)—gledp; " ds=(pgedp, " ds=1g. (10)
4]

Substituting (10) into (9) and changing the variable of integration p to u = tp, we get:

du [lf(q)
(.4 P

.;,,(q)=(ah)-”2j Pl ][det w(X,, $pX )1 (). (11)

R ’

In order to evaluate (8) with (11), let us make a Taylor expansion for ¢g=g°p,’
as follows:

$e9= L ——q"t" (12)
n=0 MN!
According to the following motion equations induced from g,

§=2pf(q) p=—pf{q). (13)

It is easy to see that g™ can be expressed as ¢ = B,(q)p" where B.(q) is a
function of g only. Therefore,

(q)p"t" (14)

and
w(Xq: ¢;X y=1aq, ¢;q}PB

e 2 (1!
& Bn(Q)P }PB_Z( 1)’

Substituting (14} and (15) into (11) and then into (8), we get,
1/2 .
d _
Oglys,®v]= (iﬁ)(%}l) Hm — J. dut\? CXP(%f(f) u;)
R

B.(@)p"'t" (15)

10 dt
=) B ,,_.]”2 (m(—l)" )
X — 8, 5,0 v]. 16
Now, taking into account the fact that, for real variables s and a0,
lim "2 exp(ias®/t) = (n/a)"2e ™ *5(s) (17)
0"

where 8(s) is the Dirac distribution, and

2
(%-i—ﬁaa—a;)t'”z exp(ias®/1) =0 (18)
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we get the following result from (16):
O(g) s ®v]

_ (ih)? J' [“" (-1)""" B.(q) n—l:] 1/2
7 (@) | ML E D 27(g)

2
7 & 1) Bou ) 5 (8(1))[50® ). (19)
‘0 nl au

According to the property of the Dirac -function,

desF(s) 5(s) = F(s)|,=o (20)

() o)
=4 (q) fﬁ‘(zf ¥+2p, Y

+r&fé\'m ‘82 (ﬂl\‘-yz] lr- P 74
lar\ar)  T1etl\zy) [Pyl g
Now, according to (13), it is easy to derive that, _
B=2f B.=2f'f Bs=4f"f*. {22)
Substituting (22) into (21), we finally get,
() so® ¥ = (WS (@)W (@)+1 (@D (g)+ [f ") S ]w(q)}[s ®r.  (23)
g 0 q 4 167(q) o

In the usual language of quantum mechanics, the above resuit means,

(2 (9)) = £ (Q) P> ~ikf (Q)P+(ih) [ 1491 f:,,f.?,ﬂ

{24)

Referring to [2, 14, 15], we find that the above operator is exactly ordered by the
GeT {general coordinates transformation)-invariant ordering rule proposed by DeWitt
and clarified by Dehai Bao er al. (One should be careful that (24) is derived for those
f{g) >0 since, otherwise {17) cannot be used.) This Gcr-invariant ordered operator
is Hermitian as physically required. However, it differs from, at #” level, the commonly
adopted Weyl rule which gives the operator form of p°f(g) as follows [21]:

Owen( P°f (@) =3(P°f (Q)+2Pf (Q)P+£(Q)P)
”(Q)

=f(QIP—iaf (Q)P+(ih)— = (25)
In thu an ‘h aninion. it seems that nws method bhears soT-invariant nrdprpd
L Upllllvll, A JwWwilig VIl D] JHWLHLEAL RS Dbl i i ARLY AR ANRE N A el WA e

operator for p* (q) is a not too surprising result, since geometric quantization is

essentially a geometric, coordinate-free construction for Hilbert space and observables
of the underlying quantum theory. In fact, we might argue that, for more general cases
(e.g. " (q)), quantum operators given by geometric quantization must also be ordered
by the GeT-invariant ordering rule, because of its coordinate-free nature. Unfortunately,
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a general concrete verification of this argument seems far from straightforward and is
also mathematically complicated. (For example, there lack formulae analogous to (17),
(18} in the general case.) A further investigation on this issue and other related problems
concerning the Bks-method is underway.

As a conclusion, we have discussed the ordering problem in framework of
geometrical quantization. Qur results are that, for polarization-preserving classical
observables pf(g), geometrical quantization method gives their operators as in (6)
which is correct and unique when Hermiticity is required; for classical quantities p*f(q)
with f{(g} >0, the Bxs kernel method gives their operators as in (24) which are actually
ordered by the GeT-invariant ordering rule. In other words, we may make the following
two remarks: (a) unlike canonical quantization and path integral quantization,
geometrical quantization itself has defined an ordering rule and thus is free from the
problem of ordering ambiguity; (b} the ordering rule defined by geometrical quantiz-
ation is the GcT-invariant rule but not the commonly adopted Weyl rule in canonical
quantization formalism (or equivalently, mid-point-rule in the path integral formalism).
This statement is verified explicitly for a simple but non-trivial example as in (24),
(25) and is argued to hold true generally.
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