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and Institute of Theoretical Physics, Academia Siniea, PO Box 2735. Beijing 100080, 
People's Republic of China 
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Abstract. The operator ordering problem is investigated in the framework of geometrical 
quantization in the Schradinger coordinate representation. It is shown that, for quantization 
of polari~ation-preserving classical observables pf (4). correct Hermitian quantum operaton 
are derived; far quantization of polarization-""preserving classical observables p*f (q) .  the 
BKS kemel method actually defines an ordering mule which is not Weyl's rule, but is the 
OCT-invanant rule proposed by DeWitt. 

The problem of operator ordering ambiguity in quantum mechanics is a long-standing 
one and has been examined by many authors both in the canonical quantization 
formalism and the Feynman path integral quantization formalism (see [l]  for a survey 
of work prior to 1959, also [2-151). It has been proved that the ordering ambiguity 
exists in both procedures. In order to get an unique quantum system corresponding 
to a given classical one, we have to choose some ordering rule (or equivalently, some 
definition of discrete form for action in the path integral formalism). Different ordering 
rules usually lead to non-equivalent quantum operators. It is not known which one 
should be adopted, as each of them has certain advantages, but none of them is 
completely satisfactory [l,  14-15]. 

Geometrical quantization is a comparatively new method of quantization developed 
in 1970s [16-201. In geometrical quantization formalism, there exists a well-defined 
operation on states in Hilbert space corresponding to a classical observable and as a 
result, geometrical quantization must be free from the problem of ambiguity. In other 
words, a certain ordering rule must have been defined by the formalism itself. It is of 
the interest to see what this rule is like. 

As the ordering problem is what we address this paper, it is convenient to work in 
one dimensional situations. The configuration space is Q = { q )  and the classical phase 
space is M = T*Q. Therefore, the symplectic structure is simply o = dp A dq and the 
symplectic potential e = p  dq. 

In order to express our results in familiar forms of usual quantum mechanics, we 
will discuss them in the Schrodinger coordinate representation. In other words, the 
polarization structure needed is chosen to be F spanned by X = a f d p .  (Since M is 
contractible, all the additional structure needed for quantization exists [191.) 

Under the chosen polarization F, Hilbert space consists of polarized sections of 
L @ J A  F with forms as s = $(q)sa@ v, where $ ( q )  is smooth complex-valued function 
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over R, so is the unit section of prequantum bundle L =  M O C  and U is the section 
of the half-form bundle for F. 

For any classical observable, geometrical quantization gives a well-defined operation 
on states of Hilbert space. 

1. Let us first consider the quantization of classical observables which preserve the 
polarization F. These kinds of quantities can be generally expressed as follows: 

g(p ,q j=p f (q j+V(q j .  ( i )  

Dehai Bao and Zhong-yuan Zhu 

The induced Hamiltonian vector field is, 

Therefore, 

As a result, the operation on states of Hilbert space induced from g is as follows 
[19-201: 

O(g)[+s,OuI= (-ifiVxz+g)--f'(q) 2 (+soOv) (4) [ i f i  I 
o ( ~ N + ~ , o ~ I =  [ -ifif(q)dq+ J v(q)-yf~q)](+S.~.). 

where V x 8  = X, - (i/ 6) O( Xg ). 
Substituting (2) into (4) directly gives, 

ih 
( 5 )  

In the usual language of quantum mechanics, the above result means, 

J if i  
V Y  L 

O(pf(q)+ V ( q ) ) =  - i f i f (q)z- , f ' (q)+ V ( q )  

( 6 )  
ifi =f(Q)P-yf ' (Q)+ V ( Q )  

where P =  O(p)=-ifi(J/Jq), Q = O ( q ) = q .  
Obviously, result (6) is just the correct operator of pf(q)+ V ( q ) ,  which is unique 

when Hermiticity is required [15]. 
2. Now let us consider the quantization of classical quantities g ( p , g )  =p2f(9) 

which do not preserve polarization F. The Hamiltonian vector field induced from g is 
as follows: 

According to the BKS method, the operators of classical quantities which do not 
preserve polarization are given by the following formula [19-20]: 
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where $ , ( 9 )  is defined by: 

x [det 4 X q ,  +Pq)l"'. $(4;9) 
and r$i is the canonical transformation induced by g. 

Straightforward calculation with the aid of (7) gives 

jo' [e(&) -g]o+;" ds = {;go@;" ds = tg. 

(9) 

Substituting (10) into (9) and changing the variable of integration p to U = tp, we get: 

In order to evaluate (8) with (1  I ) ,  let us make a Taylor expansion for 4i9 = 9.4; '  
as follows: 

According to the following motion equations induced from g, 

4 = 2Pf ( 9 )  P = -P*f ' ( 9 ) .  (13) 

It is easy to see that 9''' can be expressed as 9'"'=pn(4)p'  where & ( 9 )  is a 
function of 9 only. Therefore, 

Substituting (14) and (15)  into (11) and then into (S), we get, 

Now, taking into account the fact that, for real variables s and a > 0, 

Iim t P 2  exp(ias2/t) = ( ~ / a ) " ~ e ? " / " s ( s )  (17) 
,-0+ 

where S(s) is the Dirac distribution, and 
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we get the following result from (16): 

o ( g ) l h @ v l  
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According to the property of the Dirac &function, 

312 

Now, according to (13), it is easy to derive that, 

P , = 2 f  P2=2f'f P3=4f'Y2 

Substituting (22) into (21), we finally get, 

In the usual language of quantum mechanics, the above result means, 

Refemng to [2,14,15], we find that the above operator is exactly ordered by the 
GCT (general coordinates transformation)-invariant ordering rule proposed by DeWitt 
and clarified by Dehai Bao et al. (One should be careful that (24) is derived for those 
f (q )>O since, otherwise (17) cannot be used.) This oc-r-invariant ordered operator 
is Hermitian as physically required. However, it differs from, at R2 level, the commonly 
adopted Weyl rule which gives the operator form ofpif(q) as Soiiows 1211: 

ow,,,(Pzf('))=a(Pzf (Q)+2pf(Q)p+f(Q)p2)  

!x :he anthm'  opixion, i: seems tha: OKs -ethnd bears ccT-i"?ar;.ant ordered 
operator for p 2 f  (4) is a not too surprising result, since geometric quantization is 
essentially a geometric, coordinate-free construction for Hilbert space and observables 
of the underlying quantum theory. In fact, we might argue that, for more general Cases 
(e.g. p " f ( q ) ) ,  quantum operators given by geometric quantization must also be ordered 
by the om-invariant ordering rule, because of its coordinate-free nature. Unfortunately, 
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a general concrete verification of this argument seems far from straightforward and is 
also mathematically complicated. (For example, there lack formulae analogous to (17), 
(18) in the general case.) A further investigation on this issue and other related problems 
concerning the BKs-method is underway. 

As a conclusion, we have discussed the ordering problem in framework of 
geometrical quantization. Our results are that, for polarization-preserving classical 
observables p f ( q ) ,  geometrical quantization method gives their operators as in (6) 
which is correct and unique when Hermiticity is required; for classical quantities p z f ( q )  
withf(q) > O ,  the BKS kernel method gives their operators as in (24) which are actually 
ordered by the cc-r-invariant ordering rule. In other words, we may make the following 
two remarks: ( a )  unlike canonical quantization and path integral quantization, 
geometrical quantization itself has defined an ordering rule and thus is free from the 
problem of ordering ambiguity; ( b )  the ordering rule defined by geometrical quantiz- 
ation is the GcT-invariant rule but not the commonly adopted Weyl rule in canonical 
quantization formalism (or equivalently, mid-point-rule in the path integral formalism). 
This statement is verified explicitly for a simple but non-trivial example as in (24), 
(25) and is argued to hold true generally. 
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